Skip to main content

Advertisement

Log in

Building-Associated Neurological Damage Modeled in Human Cells: A Mechanism of Neurotoxic Effects by Exposure to Mycotoxins in the Indoor Environment

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Damage to human neurological system cells resulting from exposure to mycotoxins confirms a previously controversial public health threat for occupants of water-damaged buildings. Leading scientific organizations disagree about the ability of inhaled mycotoxins in the indoor environment to cause adverse human health effects. Damage to the neurological system can result from exposure to trichothecene mycotoxins in the indoor environment. This study demonstrates that neurological system cell damage can occur from satratoxin H exposure to neurological cells at exposure levels that can be found in water-damaged buildings contaminated with fungal growth. The constant activation of inflammatory and apoptotic pathways at low levels of exposure in human brain capillary endothelial cells, astrocytes, and neural progenitor cells may amplify devastation to neurological tissues and lead to neurological system cell damage from indirect events triggered by the presence of trichothecenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Manuel J. In Katrina’s wake. Environ Health Perspect. 2006;114:A32–9.

    Article  PubMed  Google Scholar 

  2. Solomon GM, Hjelmroos-Koski M, Rotkin-Ellman M, Hammond SK. Airborne mold and endotoxin concentrations in New Orleans, Louisiana, after flooding, October through November 2005. Environ Health Perspect. 2006;114:1381–6.

    Article  CAS  PubMed  Google Scholar 

  3. Reponen T, et al. Fungal fragments in moldy houses: a field study in homes in New Orleans and Southern Ohio. Atmos Environ. 2007;41(37):8140–9.

    Article  CAS  PubMed  Google Scholar 

  4. Bloom E, et al. Molds and mycotoxins in indoor environments—a survey in water-damaged buildings. J Occup Environ Hyg. 2009;6(11):671–8.

    Article  CAS  PubMed  Google Scholar 

  5. Adhikari A, et al. Aerosolization of fungi, (1-->3)-beta-d glucan, and endotoxin from flood-affected materials collected in New Orleans homes. Environ Res. 2009;109(3):215–24.

    Article  CAS  PubMed  Google Scholar 

  6. Cooley JD, Wong WC, Jumper CA, Straus DC. Correlation between the prevalence of certain fungi and sick building syndrome. Occup Environ Med. 1998;55:579–84.

    Article  CAS  PubMed  Google Scholar 

  7. Cooley JD. The role of Penicillium chrysogenum conidia in sick building syndrome and an asthma-like animal model. A dissertation in Medical Microbiology and Immunology. Lubbock: Texas Tech University Health Sciences Center; 1999.

  8. Brightman HS, Moss N. Sick building syndrome studies and the compilation of normative and comparative values. In: Samet JM, Spengler JD, McCarthy JF, editors. Indoor air quality handbook, vol. 3. New York: McGraw-Hill; 2000.

  9. Finnegan MJ, Pickering CAC, Burge PS. The sick building syndrome—prevalence studies. BMJ. 1984;289:1573–5.

    Article  CAS  PubMed  Google Scholar 

  10. I.O.M (U.S.). Damp indoor spaces and health. In: Committee on damp indoor spaces and health. Washington, DC: National Academies Press; 2004.

  11. Hodgson M. Field studies on the sick building syndrome. Ann N Y Acad Sci. 1992;641:21–36.

    Article  CAS  PubMed  Google Scholar 

  12. Teichman KY. Indoor air-quality research needs. Occup Med State Art Rev. 1995;10:217–27.

    CAS  Google Scholar 

  13. Calderon-Garciduenas L, et al. Air pollution and brain damage. Toxicol Pathol. 2002;30(3):373–89.

    Article  CAS  PubMed  Google Scholar 

  14. Calderon-Garciduenas L, et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol. 2003;31(5):524–38.

    Article  CAS  PubMed  Google Scholar 

  15. Edmondson DA, et al. Immune response among patients exposed to molds. Int J Mol Sci. 2009;10(12):5471–84.

    Article  CAS  PubMed  Google Scholar 

  16. Johanning E, Biagini R, Hull D, Morey P, Jarvis B, Landsbergis P. Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment. Int Arch Occup Environ Health. 1996;68:207–18.

    CAS  PubMed  Google Scholar 

  17. Kilburn KH, Thrasher JD, Immers NB. Do terbutaline- and mold-associated impairments of the brain and lung relate to autism? Toxicol Ind Health. 2009;25(9–10):703–10.

    Article  CAS  PubMed  Google Scholar 

  18. Fung F, Clark R, Williams S. Stachybotrys, a mycotoxin-producing fungus of increasing toxicologic importance. J Toxicol Clin Toxicol. 1998;36:79–86.

    Article  CAS  PubMed  Google Scholar 

  19. Bata A, Harrach B, Ujszaszi K, Kistamas A, Lasztity R. Macrocyclic trichothecene toxins produced by Stachybotrys atra strains isolated in middle Europe. Appl Environ Microbiol. 1985;49:678–81.

    CAS  PubMed  Google Scholar 

  20. Harrach B, Bata A, Bajmocy E, Benko M. Isolation of satratoxins from the bedding straw of a sheep flock with fatal stachybotrytoxicosis. Appl Environ Microbiol. 1983;45:1419–22.

    CAS  PubMed  Google Scholar 

  21. Harrach B, Mirocha CJ, Pathre SV, Palyusik M. Macrocyclic trichothecene toxins produced by a strain of Stachybotrys atra from Hungary. Appl Environ Microbiol. 1981;41:1428–32.

    CAS  PubMed  Google Scholar 

  22. Harrach B, Bata A. Macrocyclic trichothecene Stachybotrys toxins isolated from field samples. In: Proceedings of the 5th international IUPAC sympsosium on mycotoxins and phycotoxins. Vienna; 1982.

  23. Larrañaga MD (2004) The capability of a solid sorbent desiccant unit at removing selected indoor air quality-related microorganisms from the air. A dissertation in industrial engineering. Lubbock: Texas Tech University.

  24. Bernton HS. Asthma due to a mold—Aspergillus fumigatus. J Am Med Assoc. 1930;95:189–92.

    Google Scholar 

  25. Seo SC, et al. Aerosolization of particulate (1-->3)-beta-d-glucan from moldy materials. Appl Environ Microbiol. 2008;74(3):585–93.

    Article  CAS  PubMed  Google Scholar 

  26. Peters A, Veronesi B, Calderon-Garciduenas L, Gehr P, Chen LC, Geiser M, Reed W, Rothen-Rutishauser B, Schurch S, Schulz H. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol. 2006;3(13):1–13.

    Google Scholar 

  27. Hildebrandt K, et al. Short-term effects of air pollution: a panel study of blood markers in patients with chronic pulmonary disease. Part Fibre Toxicol. 2009;6:13.

    Article  Google Scholar 

  28. Rafal GL. Filamentous microorganisms and their fragments in indoor air—a review. Ann Agric Environ Med. 2004;11:185–97.

    Google Scholar 

  29. Brasel TL, et al. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Appl Environ Microbiol. 2005;71(11):7376–88.

    Article  CAS  PubMed  Google Scholar 

  30. Thrasher JD, Crawley S. The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes. Toxicol Ind Health. 2009;25(9–10):583–615.

    Article  CAS  PubMed  Google Scholar 

  31. Brasel TL, Martin JM, Carriker CG, Wilson SC, Straus DC. Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Appl Environ Microbiol. 2005;71:7376–88.

    Article  CAS  PubMed  Google Scholar 

  32. Karunasena E, Cooley JD, Douglas DR, Straus DC. Protein translation inhibition by Stachybotrys chartarum conidia with and without the mycotoxin containing polysaccharide matrix. Mycopathologia. 2004;158:87–97.

    Article  CAS  PubMed  Google Scholar 

  33. Rosen J, Heseltine E. WHO guidelines for indoor air quality: Dampness and Mould. Copenhagen: WHO; 2009. p. 1–228.

    Google Scholar 

  34. Office, U.S.G.A. Indoor mold: better coordination of research on health effects and more consistent guidance would improve federal efforts, U.S.G.A. Office, Editor. United States Government Accountability Office; 2008. p. 1–60.

  35. Islam Z, Harkema JR, Pestka JJ. Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect. 2006;114:1099–107.

    Article  CAS  PubMed  Google Scholar 

  36. Islam Z, Amuzie CJ, Harkema JR, Pestka JJ. Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin A: kinetics and potentiation by bacterial lipopolysaccharide coexposure. Toxicol Sci. 2007;98:526–41.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma RP, Kim YW editors. Macrocyclic trichothecenes. In Sharma RP, Salunkhe DK editors. Mycotoxins and phytoalexins in human and animal health. CRC Press: Boca Raton; 1991.

  38. Croft WA, Jarvis BB, Yatawara CS. Airborne outbreak of trichothecene toxicosis. Atmos Environ. 1986;20:549–52.

    Article  Google Scholar 

  39. Bata A, Harrach B, Ujszaszi K, Kistamas A, Lasztity R. Macrocyclic trichothecene toxins produced by Stachybotrys atra strains isolated in middle Europe. Appl Environ Microbiol. 1985;49:678–81.

    CAS  PubMed  Google Scholar 

  40. Jarvis BB editor. Macrocyclic trichothecenes. In: Sharma RP, Salunkhe DK editors. Mycotoxins and phytoalexins in human and animal health. Boca Raton: CRC Press; 1991.

  41. Nikulin M, Pasanen AL, Berg S, Hintikka EL. Stachybotrys atra growth and toxin production in some building-materials and fodder under different relative humidities. Appl Environ Microbiol. 1994;60:3421–4.

    CAS  PubMed  Google Scholar 

  42. Anyanwu E, Campbell AW, High W. Brainstem auditory evoked response in adolescents with acoustic mycotic neuroma due to environmental exposure to toxic molds. Int J Adolesc Med Health. 2002;14:67–76.

    PubMed  Google Scholar 

  43. Lees-Haley PR. Toxic mold and mycotoxins in neurotoxicity cases: Stachybotrys, Fusarium, Trichoderma, Aspergillus, Penicillium, Cladosporium, Alternaria, Trichothecenes. Psycholol Rep. 2003;93:561–84.

    Article  Google Scholar 

  44. Campbell IL. Neuropathogenic actions of cytokines assessed in transgenic mice. Int J Dev Neurosci. 1995;13:275–84.

    Article  CAS  PubMed  Google Scholar 

  45. Dong W, Azconda-Olivera JI, Brooks KH, Linz JE, Pestka JJ. Elevated gene expression and production of interleukins 2, 4, 5, and 6 during exposure to vomitoxin (deoxynivalenol) and cycloheximide in the EL-4 thymoma. Toxicol Appl Pharmacol. 1994;127:282–90.

    Article  CAS  PubMed  Google Scholar 

  46. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview—structure, regulation, and clinical implications. Neurobiol Dis. 2004;16:1–13.

    Article  CAS  PubMed  Google Scholar 

  47. Chavarria A, Alcocer-Varela J. Is damage in the central nervous system due to inflammation? Autoimmun Rev. 2004;3:251–60.

    Article  CAS  PubMed  Google Scholar 

  48. Ceccatelli S, Tamm C, Sleeper E, Orrenius S. Neural stem cells and cell death. In: 41st congress of the European-societies-of-toxicology. Florence, Italy; 2003.

  49. Simoni J, Simoni G, Garcia EL, Prien SD, Tran RM, Feola M, Shires GT. Protective effect of selenium on hemoglobin mediated lipid peroxidation in vivo. Artif Cells Blood Substit Immobil Biotechnol. 1995;23:469–86.

    Article  CAS  PubMed  Google Scholar 

  50. Simoni J, Simoni G, Wesson D, Griswold JA, Feola M. A novel hemoglobin-adenosine-glutathione based blood substitute: evaluation of its effects on human blood ex vivo. Am Soc Art Intern Organs J. 2000;46:679–92.

    CAS  Google Scholar 

  51. Simoni J, Simoni G, Martinez-Zaguilan R, Wesson DE, Lox CD, Prien SD, Kumar RV. Improved blood substitute: evaluation of its effects on human endothelial cells. Am Soc Art Intern Organs J. 1998;44:356–67.

    Google Scholar 

  52. Simoni J, Simoni G, Lox CD, Prien SD, Shires GT. Evidence for the direct inhibition of endothelin-1 secretion by hemoglobin in human endothelial cells. Am Soc Art Intern Organs J. 1995;41:641–51.

    Google Scholar 

  53. Wannemacher, RW, Wiener SL, editors. Textbook of military medicine, part I. Warfare, weaponry, and the casualty, medical aspects of chemical and biological warfare. In: Bellamy RF, Zajtchuk R editors. Trichothecene mycotoxins. Office of the Surgeon General: Washington, DC; 1997.

  54. Hinkley SF, Jarvis BB. Chromatographic methods for Stachybotrys toxins. Methods Mol Biol. 2000;157:173–94.

    Google Scholar 

  55. Jarvis BB, Salemme J, Morais A. Stachybotrys toxins. Nat Toxins. 1995;3:10–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Texas Tech University Health Sciences Center for their Centers of Excellence award support. We would also like to thank Grace Simoni (Department of Surgery) for her excellent technical assistance and guidance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enusha Karunasena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karunasena, E., Larrañaga, M.D., Simoni, J.S. et al. Building-Associated Neurological Damage Modeled in Human Cells: A Mechanism of Neurotoxic Effects by Exposure to Mycotoxins in the Indoor Environment. Mycopathologia 170, 377–390 (2010). https://doi.org/10.1007/s11046-010-9330-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9330-5

Keywords

Navigation